Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070909

RESUMO

A teleoperated robotic catheter operating system is a solution to avoid occupational hazards caused by repeated exposure radiation of the surgeon to X-ray during the endovascular procedures. However, inadequate force feedback and collision detection while teleoperating surgical tools elevate the risk of endovascular procedures. Moreover, surgeons cannot control the force of the catheter/guidewire within a proper range, and thus the risk of blood vessel damage will increase. In this paper, a magnetorheological fluid (MR)-based robot-assisted catheter/guidewire surgery system has been developed, which uses the surgeon's natural manipulation skills acquired through experience and uses haptic cues to generate collision detection to ensure surgical safety. We present tests for the performance evaluation regarding the teleoperation, the force measurement, and the collision detection with haptic cues. Results show that the system can track the desired position of the surgical tool and detect the relevant force event at the catheter. In addition, this method can more readily enable surgeons to distinguish whether the proximal force exceeds or meets the safety threshold of blood vessels.

2.
Micromachines (Basel) ; 11(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936534

RESUMO

Amphibious Spherical Robots (ASRs) use an electric field to communicate and collaborate effectively in a turbid water of confined spaces where other mode communication modalities failed. This paper proposes an embedded architecture formation strategy for a group of turtle-inspired amphibious robots to maintain a long distance-parameterized path based on dynamic visual servoing. Inspired by this biological phenomenon, we design an artificial multi-robot cooperative mode and explore an electronic communication and collaborate devices, the control method is based in particular on underwater environment and also conduct a detailed analysis of control motion module. The objectives of control strategies are divided into four categories: The first strategy is that the leader robot controls the action of the overall robots to maintain collaborate together during motion along a desired geometric path and to follow a timing law that the communication efficiency and the arrival times to assigned sites. Furthermore, we design an adaptive visual servoing controller for trajectory tracking task, taking into account system dynamics with environment interactions. After that, the third strategy is a centralized optimization algorithm for the redistribution of target mission changes. Finally, this paper also proposes a new method of control strategies in order to guarantee that each robot in the team moves together according to the preset target toward its location in the group formation based on communication and stability modules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...